Stoponium at the LHC

Stephen P. Martin Northern Illinois University

LHC New Physics Signatures Workshop Ann Arbor, January 7, 2008

Based on: hep-ph/0801.0237

Classic collider signatures for SUSY:

Invisible LSPs \rightarrow Missing Energy \rightarrow No Mass Peaks

A possible exception:

Stoponium = $\eta_{\tilde{t}}$ = s-wave $\tilde{t}_1^* \tilde{t}_1$ bound state

- will be produced at hadron colliders.
- decays by annihilation to gg, $\gamma\gamma$, WW, ZZ, $Z\gamma$, $t\bar{t}$, $b\bar{b}$, $\tilde{N}_1\tilde{N}_1$.

Drees and Nojiri 1994: $\gamma\gamma$ final state may be detectable

The process

$$pp \to \eta_{\tilde{t}} \to \gamma\gamma$$

is clearly NOT a discovery mode for supersymmetry.

Importance is that it will give a uniquely precise measurement of the top-squark mass, which then serves as a "standard candle" for the other superpartner masses. For Stoponium to form, need: decay width \ll binding energy.

Possible flavor-preserving 2-body top-squark decays:

$$\widetilde{t}_1 \rightarrow t\widetilde{N}_1$$

 $\widetilde{t}_1 \rightarrow b\widetilde{C}_1$

If open, will not allow Stoponium to form.

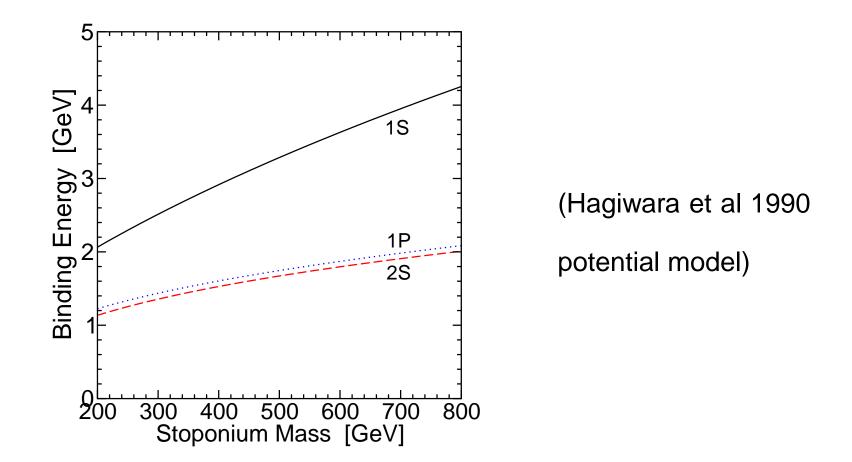
But, if these are kinematically forbidden, then Stoponium will form, because the 3-body (or 4-body) and flavor-violating 2-body decays:

$$\tilde{t}_1 \rightarrow W^{(*)}b\tilde{N}_1$$

 $\tilde{t}_1 \rightarrow c\tilde{N}_1$

have tiny partial widths \ll Stoponium binding energy.

Binding energies for Stoponium states



In contrast, gg annihilation partial width is dominant in many models, $\sim 2~{\rm MeV}$.

Model-independent partial widths:

$$\Gamma(\eta_{\tilde{t}} \to gg) = \frac{4}{3} \alpha_S^2 |R(0)|^2 / m_{\eta_{\tilde{t}}}^2,$$

$$\Gamma(\eta_{\tilde{t}} \to \gamma\gamma) = \frac{32}{27} \alpha^2 |R(0)|^2 / m_{\eta_{\tilde{t}}}^2,$$

where R(0) = wavefunction at origin.

Then:

$$\begin{split} \sigma(pp \to \eta_{\tilde{t}} \to \gamma\gamma) &= \\ & \frac{\pi^2}{8m_{\eta_{\tilde{t}}}^3} \text{BR}(\eta_{\tilde{t}} \to gg) \Gamma(\eta_{\tilde{t}} \to \gamma\gamma) \int_{\tau}^1 dx \frac{\tau}{x} g(x, Q^2) g(\tau/x, Q^2). \end{split}$$

where $au=m_{\eta_{\tilde{t}}}^2/s.$

The crucial unknowns are $m_{\eta_{\tilde{t}}}$ and $\mathrm{BR}(\eta_{\tilde{t}} \to gg)$. In many models, the gg final state dominates, so take $\mathrm{BR}(\eta_{\tilde{t}} \to gg) \approx 1$ as a useful idealized limit.

Stoponium signal:

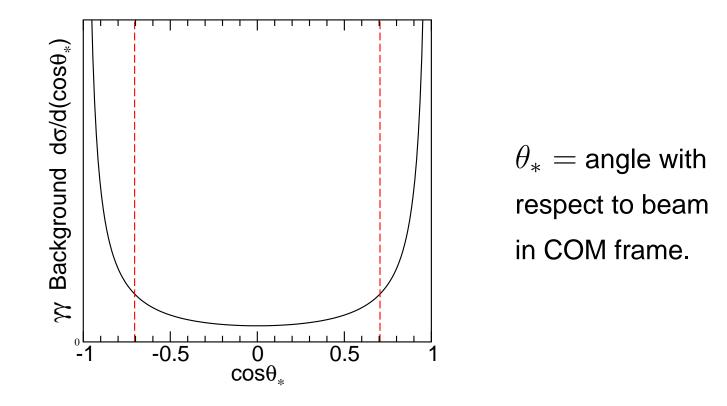
$$pp \to \eta_{\tilde{t}} \to \gamma\gamma$$

gives a narrow (few MeV) diphoton mass peak against a smoothly falling background.

The experimental width is determined by electromagnetic calorimeter resolution, of order 1% for CMS and ATLAS.

The irreducible physics backgrounds at leading order are:

 $q\overline{q} \rightarrow \gamma\gamma$ (tree-level) $gg \rightarrow \gamma\gamma$ (1-loop) In the COM frame, the Stoponium signal is isotropic, but irreducible backgrounds are peaked forward/backward:



Optimal cut for $S/\sqrt{B}\;$ (independent of stoponium mass) is:

 $|\cos\theta_*| < 0.705$

I use angular cuts:

 $|\cos \theta_*| < 0.7$ (COM frame) $|\cos \theta| < 0.95$ (Lab frame)

Note photons then automatically have high p_T for large $m_{\eta_{\tilde{\tau}}}$.

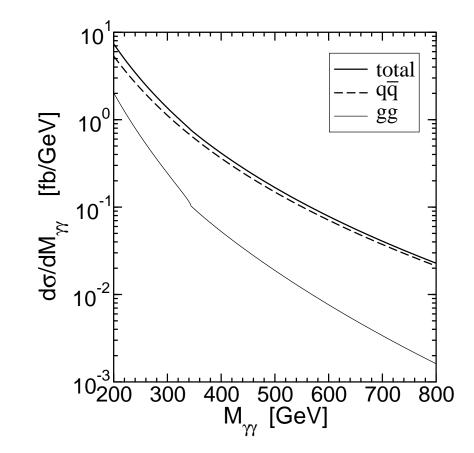
Lab frame cut ensures photons are isolated from beam remnant jets.

Must also require photons isolated from hadronic activity, and no additional hard jets. This reduces higher-order backgrounds from:

$$qg \rightarrow \gamma \gamma q$$

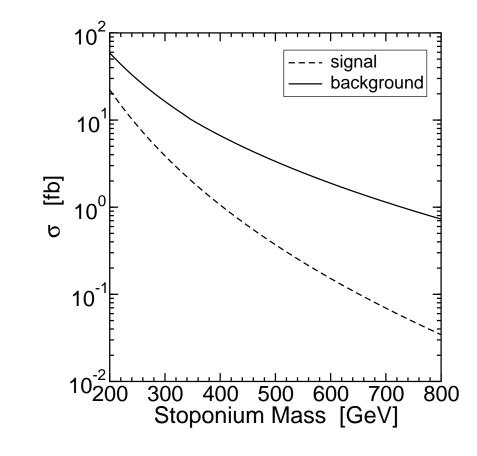
 $qg \rightarrow \gamma q$ (with photon from jet fragmentation)

which can be as large or larger than the irreducible backgrounds. I do not include these higher-order corrections to background; higher-order corrections to signal are not known, so impact of cuts cannot be evaluated at present. Backgrounds at LHC, at leading order, after cuts:



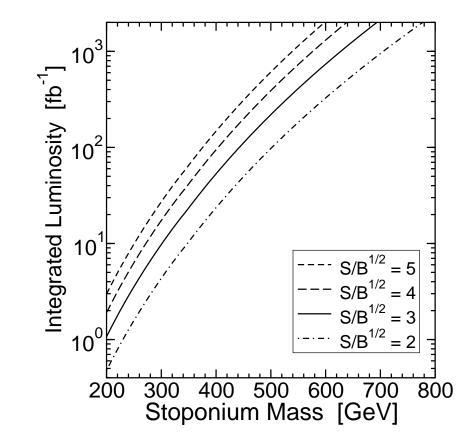
Note: actual background will be obtained from LHC data!

Signal and background in a bin taken to include essentially all of the signal: $|M_{\gamma\gamma} - m_{\eta_{\tilde{t}}}| < 0.02m_{\eta_{\tilde{t}}}$



Signal assumes idealized case ${\rm BR}(gg\to\gamma\gamma)\approx 1.$

Luminosity needed for expected significances $S/\sqrt{B}=2,3,4,5.$



Signal assumes idealized case $BR(gg \rightarrow \gamma\gamma) \approx 1$.

Consider Compressed SUSY models in which the thermal relic abundance of dark matter is determined by top-squark-mediated LSP annihilations:

$$\tilde{N}_1 \tilde{N}_1 \to t \overline{t}.$$

This follows from a small gluino/wino mass ratio $M_3/M_2 \sim 1/3$ at the unification scale (SPM, hep-ph/0703097).

Also ameliorates the SUSY little hierarchy problem; Kane+King hep-ph/9810374. To be specific, assume that at the GUT scale:

$$M_1 = m_{1/2}(1 + C_{24}),$$

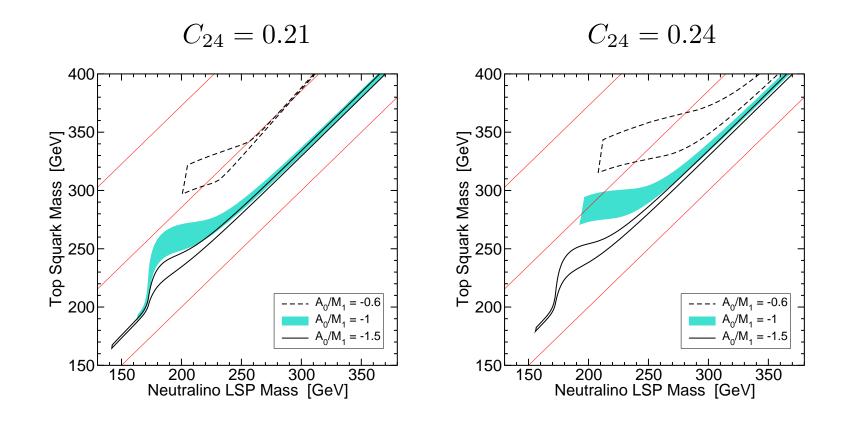
$$M_2 = m_{1/2}(1 + 3C_{24}),$$

$$M_3 = m_{1/2}(1 - 2C_{24}),$$

where $C_{24} = 0$ would recover the usual mSUGRA.

Instead, $0.15 \leq C_{24} \leq 0.28$ allows natural top-squark-mediated Dark Matter annihilation.

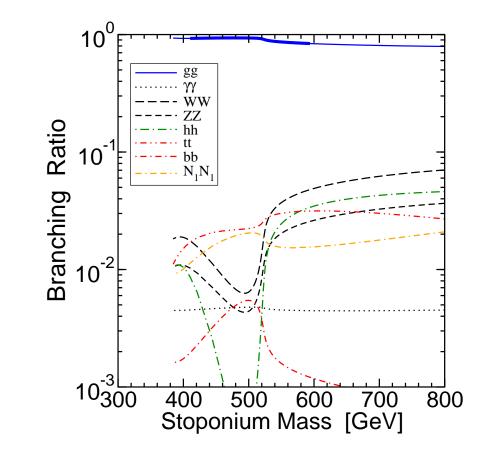
Regions in the stop-LSP mass plane with $m_h > 114~{\rm GeV}$ and $0.09 < \Omega_{\rm DM} h^2 < 0.13$



Stoponium must be kinematically stable in this scenario!

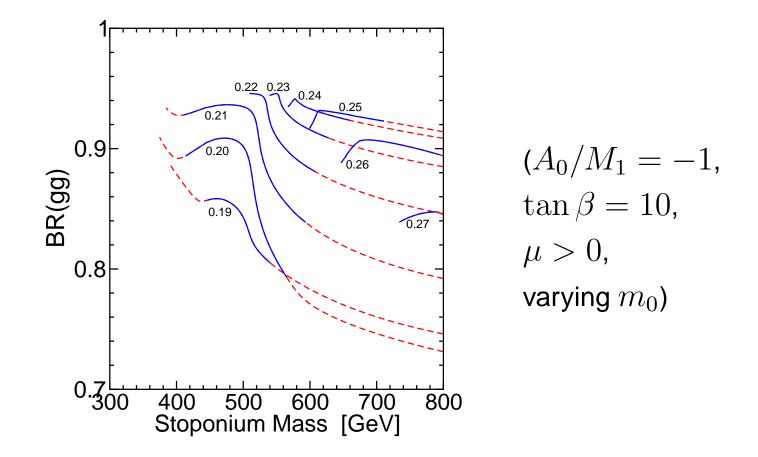
What do these models predict about ${\rm BR}(\eta_{\tilde{t}} \to gg)$?

A typical model line :



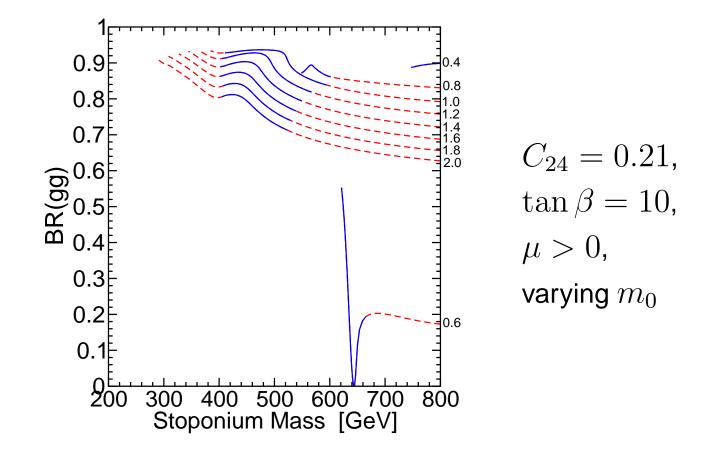
 $(C_{24}=0.21, A_0/M_1=-1, \tan\beta=10, \mu>0,$ varying m_0)

More generally, for various $0.19 \le C_{24} \le 0.27$



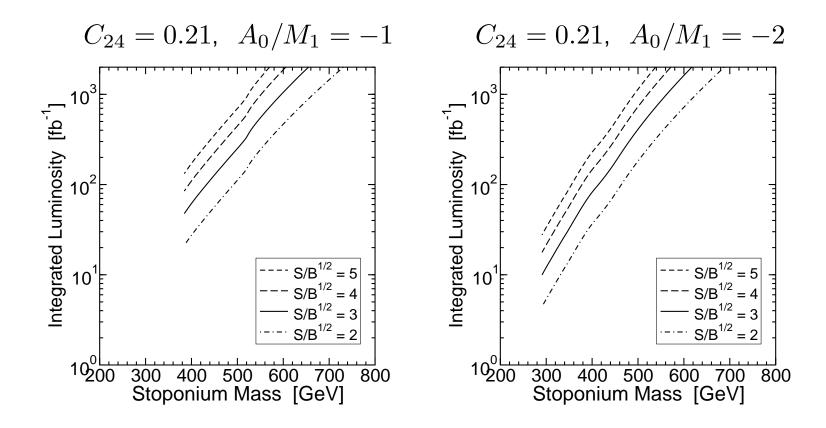
Compared to the "idealized" case, the luminosity required for detection scales like $1/[{\rm BR}(\eta_{\tilde{t}}\to gg)]^2$

Other slices through parameter space, $0.4 \leq -A_0/M_1 \leq 2.0$



The $-A_0/M_1 = 0.6$ case is special: resonant Stoponium annihilation to $b\overline{b}$ and $t\overline{t}$ through H^0 in the *s*-channel can spoil the $\gamma\gamma$ signal.

Luminosity needed for expected significances, now including $BR(\eta_{\tilde{t}} \rightarrow \gamma \gamma)$ effect:



Detectability for $m_{\eta_{\tilde{t}}} = 500$ GeV will require more than 100 fb⁻¹. For $m_{\eta_{\tilde{t}}} = 300$ GeV, 10 fb⁻¹ might do it. Another scenario with stable stoponium: electroweak scale baryogenesis with a strongly first-order phase transition.

$$\tilde{t}_1$$
 is lighter than top, mostly right-handed.

Espinosa, Quiros, Zwirner, Carena, Wagner...

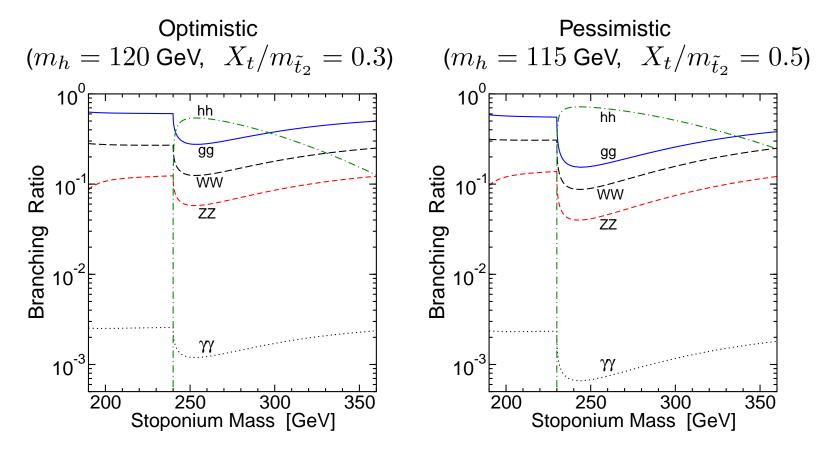
Balazs, Carena, Wagner hep-ph/0403224, Carena, Menon, Morrissey, Wagner hep-ph/0412264 Carena, Nardini, Quiros, Wagner to appear.

Off-diagonal top-squark squared mass is $m_t X_t$, with

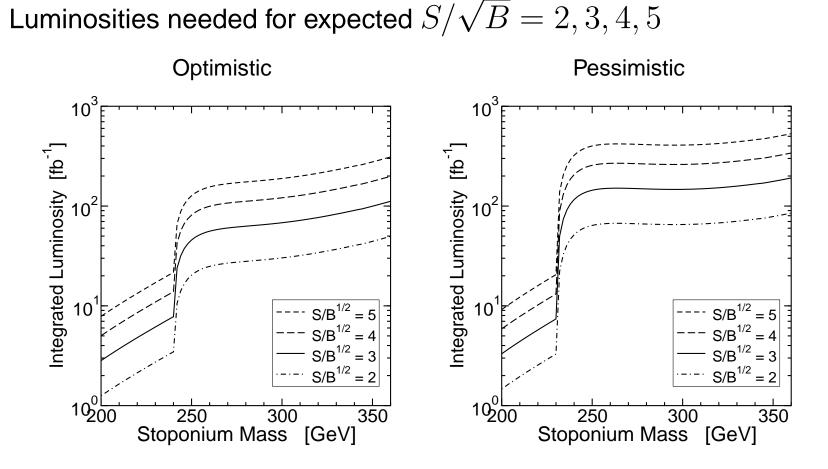
 $0.3 \lesssim |X_t|/m_{\tilde{t}_2} \lesssim 0.5$ $m_{\tilde{t}_2}$ very large, (here 10 TeV) $5 \lesssim \tan \beta \lesssim 10$

Stoponium is stable, mass must be less than about 360 GeV.

Stoponium branching ratios in model lines motivated by electroweak-scale baryogenesis:



The spoiler mode here is $\eta_{\tilde{t}} \to h^0 h^0$, especially just above threshold.



100 fb⁻¹ might lead to detectability over the entire stoponium mass range in this scenario.

10 fb $^{-1}$ might be enough, if $m_{\eta_{\tilde{t}}} < 2m_{h^0}$.

Outlook:

- Diphoton signal for Stoponium may be a viable signal at LHC
- I've updated the original Drees and Nojiri 1994 analysis:
 - Corrected factors of 2 in gg, $\gamma\gamma$ partial widths
 - More liberal angular cut, more conservative energy resolution
 - Used now-known m_{top} , $\Omega_{DM}h^2$, LEP2 m_h limit.
 - Motivated models of dark matter and baryogenesis
- 100 fb⁻¹ needed for 500 GeV Stoponium
- 10 fb⁻¹ may be enough for <300 GeV Stoponium
- If detected, Stoponium would give a uniquely precise determination of superpartner masses